家长易论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 536|回复: 2
打印 上一主题 下一主题

[综合交流] 名题之三等分角问题

[复制链接]
跳转到指定楼层
楼主
发表于 2013-2-18 15:47:10 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
document对象

马上注册,结交更多家长,享用更多功能,让你轻松玩转家长易社区。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
  三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一,即 用圆规与直尺把一任意角三等分。问题的难处在于作图使用工具的限制。古希腊人要求几何作图只许使用直尺(没有刻度,只能作直线的尺)和圆规。这问题曾吸引着许多人去研究,但都无一成功。1837年凡齐尔( 1814-1848)运用代数方法证明了,这是一个标尺作图的不可能问题。
  在研究「三等分角」的过程中发现了如蚌线、心脏线、圆锥曲线等特殊曲线。人们还发现,只要放弃「尺规作图」的戒律,三等分角并不是一个很难的问题。古希腊数学家阿基米得(前287-前212)发现只要在直尺上固定一点,问题就可解决了。现简介其法如下:在直尺边缘上添加一点P,命尺端为O。   设所要三等分的角是∠ACB,以C为圆心,OP为半径作半圆交角边于A,B;使O点在CA延在线移动,P点在圆周上移动,当尺通过B时,联OPB(见图)。由于OP=PC=CB,所以∠COB=∠AC B/3。这里使用的工具已不限于标尺,而且作图方法也与公设不合。
分享到:  QQ空间QQ空间 腾讯微博腾讯微博 腾讯朋友腾讯朋友
收藏收藏 分享分享 分享淘帖
沙发
发表于 2013-2-18 16:48:15 | 只看该作者
学习了
板凳
发表于 2013-2-19 13:57:57 | 只看该作者
三等分角问题根本是不可能成立的。
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Archiver|网站地图|家长易论坛 ( 鄂ICP备16011226号-1  点我聊天

GMT+8, 2024-11-16 13:06

Powered by 家长易

快速回复 返回顶部 返回列表