|
马上注册,结交更多家长,享用更多功能,让你轻松玩转家长易社区。
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
数学基础的第三次危机是由1897年的突然冲击而出现的,从整体上看到现在还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论已经成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。
1897年,福尔蒂揭示了集合论的第一个悖论;两年后,康托发现了很相似的悖论,它们涉及到集合论中的结果。1902年,罗素发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。
罗素,英国人,哲学家、逻辑学家、数学家。1902年著述《数学原理》,继而与怀德海合著《数学原理》(1910年~1913年),把数学归纳为一个公理体系,是划时代的著作之一。他在很多领域都有大量著作,并于1950年获得诺贝尔文学奖。他关心社会现象,参加和平运动,开办学校。1968~1969年出版了他的自传。
罗素悖论曾被以多种形式通俗化,其中最著名的是罗索于1919年给出的,它讲的是某村理发师的困境。理发师宣布了这样一条原则:他只给不自己刮胡子的人刮胡子。当人们试图答复下列疑问时,就认识到了这种情况的悖论性质:“理发师是否可以给自己刮胡子?”如果他给自己刮胡子,那么他就不符合他的原则;如果他不给自己刮胡子,那么他按原则就该为自己刮胡子。
罗素悖论使整个数学大厦动摇了,无怪乎弗雷格在收到罗素的信之后,在他刚要出版的《算术的基本法则》第2卷本末尾写道:“一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了。当本书等待付印的时候,罗素先生的一封信把我就置于这种境地”。狄德金原来打算把《连续性及无理数》第3版付印,这时也把稿件抽了回来。发现拓扑学中“不动点原理”的布劳恩也认为自己过去做的工作都是“废话”,声称要放弃不动点原理。
自从在康托的集合论和发现上述矛盾之后,还产生了许多附加的悖论。集合论的现代悖论与逻辑的几个古代悖论有关系。例如公元前四世纪的欧伯利得悖论:“我现在正在做的这个陈述是假的”。如果这个陈述是真的,则它是假的;然而,如果这个陈述是假的,则它又是真的了。于是,这个陈述既不能是真的,又不能是假的,怎么也逃避不了矛盾。更早的还有埃皮门尼德(公元前6世纪,克利特人)悖论:“克利特人总是说谎的人”。只要简单分析一下,就能看出这句话也是自相矛盾的。
集合论中悖论的存在,明确地表示某些地方出了毛病。自从发现它们之后,人们发表了大量关于这个课题的文章,并且为解决它们作过大量的尝试。就数学而论,看来有一条容易的出路:人们只要把集合论建立在公理化的基础上,加以充分限制以排除所知道的矛盾。
第一次这样的尝试是策梅罗于1908年做出的,以后还有多人进行了加工。但是,此程序曾受到批评,因为它只是避开了某些悖论,而未能说明这些悖论;此外,它不能保证将来不出现别种悖论。
另一种程序既能解释又能排除已知悖论。如果仔细地检查就会发现:上面的每一个悖论都涉及一个集合S和S的一个成员M(既M是靠S定义的)。这样的一个定义被称作是“非断言的”,而非断言的定义在某种意义上是循环的。例如,考虑罗素的理发师悖论:用M标志理发师,用S标示所有成员的集合,则M被非断言地定义为“S的给并且只给不自己刮胡子人中刮胡子的那个成员”。此定义的循环的性质是显然的——理发师的定义涉及所有的成员,并且理发师本身就是这里的成员。因此,不允许有非断言的定义便可能是一种解决集合论的己知悖论的办法。然而,对这种解决办法,有一个严重的责难,即包括非断言定义的那几部分数学是数学家很不愿丢弃的,例如定理“每一个具有上界的实数非空集合有最小上界(上确界)”。
解决集合论的悖论的其它尝试,是从逻辑上去找问题的症结,这带来了逻辑基础的全面研究。
从1900年到1930年左右,数学的危机使许多数学家卷入一场大辩论当中。他们看到这次危机涉及到数学的根本,因此必须对数学的哲学基础加以严密的考察。在这场大辩论中,原来不明显的意见分歧扩展成为学派的争论。以罗素为代表的逻缉主义、以布劳威为代表的直觉主义、以希尔伯特为代表的形式主义三大数学哲学学派应运而生。它们都是唯心主义学派,它们都提出了各自的处理一般集合论中的悖论的办法。他们在争论中尽管言语尖刻,好象势不两立,其实各自的观点都吸收了对方的看法而又有很多变化。
1931年,哥德尔不完全性定理的证明暴露了各派的弱点,哲学的争论黯淡了下来。此后,各派力量沿着自己的道路发展演化。尽管争论的问题远未解决,但大部分数学家并不大关心哲学问题。直到近年,数学哲学问题才又激起人们的兴趣。
承认无穷集合、承认无穷基数,就好象一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论中一大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次数学危机表面上解决了,实质上更深刻地以其它形式延续着。
数学中的矛盾既然是固有的,它的激烈冲突——危机就不可避免。危机的解决给数学带来了许多新认识、新内容,有时也带来了革命性的变化。把20世纪的数学同以前全部数学相比,内容要丰富得多,认识要深入得多。在集合论的基础上,诞生了抽象代数学、拓扑学、泛函分析与测度论,数理逻辑也兴旺发达成为数学有机体的一部分。古代的代数几何、微分几何、复分析现在已经推广到高维。代数数论的面貌也多次改变,变得越来越优美、完整。一系列经典问题完满地得到解决,同时又产生更多的新问题。特别是二次大战之后,新成果层出不穷,从来间断。数学呈现无比兴旺发达的景象,而这正是人们同数学中的矛盾、危机斗争的产物。
|
|