事物是从量变到质变,极限方法的实质正是通过量变的无限过程达到质变。 教学“圆的面积和周长”中,“化圆为方”“化曲为直”的极限分割思路,在观察有限分割的基础上想象它们的极限状态,这样不仅使学生掌握公式,还能从曲与直的矛盾转化中萌发了无限逼近的极限思想。 战国时代的《庄子·天下》篇中的“一尺之棰,日取其半,万世不竭。”充满了极限思想。古代杰出的数学家刘徽的“割圆术”就是利用极限思想来求得圆的周长的,他首先作圆内接正多边形,当多边形的边数越多时,多边形的周长就越接近于圆的周长。刘徽总结出:“割之弥细,所失弥少。割之又割以至于不可割,则与圆合体无所失矣。”正是用这种极限的思想,刘徽求出了π,即“徽率”。 现行小学教材中有许多处注意了极限思想的渗透:在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,让学生初步体会“无限”思想。在循环小数这一部分内容,在教学 1÷ 3 = 0。333…是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。